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Mine-lmpact Burial Model (IMPACT35) Verification
and Improvement Using Sediment
Bearing Factor Method

Peter C. Chu and Chenwu Fan

Abstract—Recently, a 3-D model (IMPACT35) was developed
to predict a falling cylindrical mine’s location and orientation in
air-water—sediment columns. The model contains the following
three components: 1) triple coordinate transform, 2) hydrody-
namics of falling rigid object in a single medium (air, water, or
sediment) and in multiple media (air-water and water—sediment
interfaces), and 3) delta method for sediment resistance with the
transient pore pressure. Two mine-impact burial experiments
were conducted to detect the mine trajectory in water column
[Carderock Division, Naval Surface Warfare Center (NSWC),
West Bethesda, MD, on September 10-14, 2001], and to measure
the mine burial volume in sediment (Baltic Sea in June 2003). The
existing IMPACT35 predicts a mine’s location and orientation in
the water column, but not in the sediment column. Since sediment
resistance largely affects the mine burial depth and orientation in
sediment, a new method (bearing factor) is proposed to compute
the sediment resistant force and torque. The improvement of
IMPACT35 with the bearing factor method is verified using the
data collected from the Baltic Sea mine-impact burial experiment.
The prediction error satisfies near-Gaussian distribution. The
bias of the burial volume (in percent) prediction reduces from
11% using the delta method (old) to 0.1% using the bearing factor
method (new). Correspondingly, the root-mean-square error
(rmse) reduces from 26.8% to 15.8%.

Index Terms—Bearing factor, burial depth and orientation,
drag and lift forces and torques, IMPACT35, mine-impact burial
prediction, sediment resistance force and torque, triple coordinate
system.

I. INTRODUCTION

HE conclusion of the cold war culminated with the

Union of Soviet Socialist Republics (U.S.S.R.) effectively
ceasing to exist under international law on December 31, 1991.
This historical event caused the U.S. military and specifically
the U.S. Navy and Marine Corp Team to shift tactical emphasis
from “blue” water, deep-ocean doctrine to littoral warfare
doctrine. This shift changed military responses dealing with a
wide range of worldwide regional crises requiring forward sea
basing, and expeditionary force landing support.
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Sea mines are big threat in naval operations. Within the
past 15 years three U.S. ships, the U.S.S. Samuel B. Roberts
(FFG-58), Tripoli (LPH-10), and Princeton (CG-59) havefallen
victim to mines. Total ship damage was $125 million while
the mines cost approximately $30000 [1]. Mines have evolved
over the years from the dumb “horned” contact mines that
damaged the Tripoli and Roberts to ones that are relatively so-
phisticated—nonmagnetic materials, irregular shapes, anechoic
coatings, multiple sensors, and ship count routines. Despite
their increased sophistication, mines remain inexpensive and
are relatively easy to manufacture, keep, and place.

Accurate mine burial predictions are inherently difficult
[2], because of unknown conditions in mine deployment and
uncertain environments such as waves, currents, and sediment
transports [3]. The U.S. Navy developed operational models
to forecast ocean environments for mine burial prediction [4],
[5]. Recently, statistical methods such as the Monte Carlo [6]
and the expert system methods [3] have been developed. These
methods have a core-physical model for falling rigid body
through air—water—sediment columns. The U.S. Navy has a
2-D model (IMPACT28) to predict a cylinder’s trgjectory and
impact burial. The data collected from the mine-impact burial
experiment in the surf zone near the Naval Postgraduate School,
Monterey, CA, shows overprediction of the buria depth (an
order of magnitude larger) using IMPACT28 [7].

A 3-D model (IMPACT35) was recently developed at the
Naval Postgraduate School to predict acylinder’ strajectory and
impact burial [8]{12]. The dynamica system can be simpli-
fied using the following three coordinate systems: earth-fixed
coordinate (E-coordinate), the cylinder’s main-axis-following
coordinate (M-coordinate), and hydrodynamic force-following
coordinate (F-coordinate). The origin of both M- and F-coor-
dinates is at the cylinder's center of mass (COM). The body
forces and their moments are easily calculated using the E-co-
ordinate system. The hydrodynamic forces and their moments
are easily computed using the F-coordinate. The cylinder’smo-
ments of gyration are smply represented using the M-coordi-
nate. When the mine penetrates into an interface between two
media (air-water or water—sediment), the cylinder is decom-
posed into two parts with each one contacting one medium. The
body forces (such as the buoyancy force) and surface forces
(such as pressure, hydrodynamic force) are computed separately
for the two parts. A fully 3-D model is developed for predicting
the trandation velocity and orientation of a falling cylindrical
mine through air, water, and sediment. The added value capa-
bility of the 3-D model (IMPACT 35) versusthe 2-D model (IM-
PACT28) is verified using experimenta data.
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Fig. 1. M-coordinate with the COM as the origin X and (%, j.. ) as the two
axes. Here,  is the distance between the COV (B) and COM (X); (L, R) are
the cylinder’s length and radius [8].

Recently, two mine-impact burial experiments were con-
ducted to detect mine trajectory in the water column [Carde-
rock Division, Naval Surface Warfare Center (NSWC), West
Bethesda, MD, on September 10-14, 2001] and to measure
the mine burial in the sediment (Baltic Sea in June 2003).
The collected data are used for model verification. Section 11
describes basic physics of the recently developed 3-D model
(IMPACTS35). Section 111 shows the added value of IMPACT35
in predicting mine movement in the water column. However,
Section 1V shows weakness of the existing IMPACT35 in
predicting mine movement in sediment. Section V presents the
new bearing factor method to compute the sediment resistant
force and torque. Section VI shows the improvement of the
bearing factor method in predicting mine burial in sediment.
Section VII presents the conclusions.

Il. DESCRIPTION OF IMPACT35

The 3-D mine-impact burial prediction model (IMPACT35)
contains the following major components: 1) triple coordinate
systems, 2) momentum balance, 3) moment of momentum bal-
ance, 4) hydrodynamics, and 5) sediment dynamics. Among
them, the hydrodynamics (drag and lift forces and torques) have
been described in [8] and [11]-[13], and will not be discussed
here.

A. Triple Coordinate Systems

Consider an axially symmetric cylinder with the center of
mass (COM) X and the center of volume (COV) B on the main
axis (Fig. 1). Let (L, R, x) represent the cylinder’s length, ra-
dius, and the distance between the two points (X, B). The pos-
itive x-values refer to the nose-down case, i.e., the point X
is lower than the point B. Three coordinate systems are used
to model the falling cylinder through the air, water, and sedi-
ment phases: earth-fixed coordinate (E-coordinate), main-axis-
following coordinate (M-coordinate), and force-following coor-
dinate (F-coordinate) systems. All the systems are 3-D, orthog-
onal, and right-handed [8].

The E-coordinate system is represented by Fg(O,1,j,k)
with the origin O, and three axes: z- and y-axes (horizontal)
with the unit vectors (i, j) and z-axis (vertical) with the unit
vector k (upward positive). The position of the cylinder is
represented by the position of the COM

X=zi+yj+2zk 1)

k k
A
P
ly@"a
|
Yz

Fig. 2. Three coordinate systems. Here, (i, j,k) are the unit vectors of
E-coordinate system. Both M- and F-coordinate systems share the same axis,
i.e., iy and i, are the same unit vectors [8].

which describes translation of the cylinder. The translation ve-
locity is given by

dX

dt v

Let the orientation of the cylinder’s main axis (pointing

downward) be given by ip;. The angle between i, and k
is denoted by v + m/2. Projection of the vector iy; onto
the (x,y)-plane creates angle (i3) between the projection
and the z-axis (Fig. 2). The M-coordinate system is repre-
sented by Fn;(X,1inr,jar, kar) with the origin X, unit vectors
(irs,dnr, kar), and coordinates (zar,yar, zar). In the plane
consisting of vectors iy, and k (passing through the point M),
two new unit vectors (jas, kas) are defined with ja, perpendic-
ular to the (ips, k)-plane, and k,; perpendicular to iy, in the
(ips, k)-plane. The unit vectors of the M-coordinate system are
given by (Fig. 2)

V = (u,v,w). (2)

Jv = ku v, kar =iv X jur (3)

The M-coordinate system is solely determined by the orienta-
tion of the cylinder’s main axis ij;.

The  F-coordinate  system is  represented by
Fr(X,ip,jr,kr) with the origin X, unit vectors
(ir,jr,kr), and coordinates (zr,yr,2r). Let V,, be the
fluid velocity. The fluid-to-cylinder velocity is represented by
V., =V, —V, that is decomposed into two parts

Vr = Vl + V27

Vi =Viip, Vo= VijF (4)

where
Vi =(V,-ip)ir
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TABLE |
PHYSICAL PARAMETERS OF THE MODEL MINES IN THE NSWC-CARDEROCK EXPERIMENT (AFTER [19])

Mine Mass 4 L Ji J (./3; V4
(kg) (10°kgm?) | (m) (kgm’) | (kgm?) | (m)

1 16.96 1.60 0.505 0.0647 0.356 0

2 22.27 2.10 0.505 0.0806 0.477 0

3 34.93 1.60 1.010 0.1362 2.900 0

4 45.85 2.10 1.010 0.1696 3.820 0

5 45.85 2.10 1.010 0.1693 3.940 0.0045

6 45.85 2.10 1.010 0.1692 4.570 -0.077

Experiment Impact35
Impact28

(time=1.2 5}

Z(m)

ime=1.6 g)

X (m) Y (m)

X (m)

(b) (©

Fig. 3. Movement of mine #6 (L = 1.01 m, p = 2.1 x 103 kg m—3) with y = —0.0077 m and >, = —14.0° obtained from (a) NSWC-Carderock experiment,

(b) 3-D IMPACT35 model, and (c) 2-D IMPACT28 model (after [11]).

is the component paralleling to the cylinder's main axis (i.e.,
along i,;), and

Vo=V, - (V,-ip)ir

is the component perpendicular to the cylinder’s main axial di-
rection. The unit vectors for the F-coordinate are defined by
(column vectors)

T11

ir=iy= jr=V2/|Va|, kp=ir xjr. (5)
731

The F-coordinate system is solely determined by the orienta-

tion of the cylinder’s main axis (ix;) and the water-to-cylinder

velocity. Note that the M- and F-coordinate systems have one

common unit vector iy, (orientation of the cylinder). Use of the

F-coordinate system simplifies the calculations for the lift and

drag forces and torques acting on the cylinder.

B. Momentum Balance

The 3-D translation velocity of the cylinder (V) is governed
by the momentum equation in the E-coordinate system [8],

[11]H13]
d u
v

o Fnh + Fh
dt

i ©)

0
=—|0|+
g
where ¢ is the gravitational acceleration, II is the cylinder
volume, p is the rigid body density, pIT = m is the cylinder
mass, F,,,, is the nonhydrodynamic force defined later, and F,
is the hydrodynamic force (i.e., surface force including drag,
lift forces). Both F,,;, and F, are integrated for the cylinder.
The drag and lift forces are calculated using the drag and lift
laws with the given water-to-cylinder velocity (V,.). In the
F-coordinate, V.. is decomposed into along-cylinder (V) and
across-cylinder (V) components. The nonhydrodynamic force
F.,.;, is the buoyancy force (F,) for the air and water phases
Fnn = Fy = k(pallg, pullg) )
where (pa, p.,) are the air and water densities and F,,j, is the
resultant of buoyancy force (F}), and shearing resistance force
(F) for the sediment phase.

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on May 21, 2009 at 11:08 from IEEE Xplore. Restrictions apply.



CHU AND FAN: MINE-IMPACT BURIAL MODEL (IMPACT35) VERIFICATION AND IMPROVEMENT 37

Experiment Impact35
Impact28
0 T T T T
°y 05}
-0.5
1t
-1 (time=0.4 s)
-1.5 15¢
-2 /ﬁme:D.S o) -2 1
.25 / 05l (me=08s) |
g
N 3 {time=1.2 5) o

(time=1.2 g)

4]
-3.5 / ;; time=1.25) a5l
-4 %

te=163)
-4.5
-5 {time=1.84 5) N ? 1
ime=1.6 s)
X

J & 4
(o
-

+
-

-1 05 0 05
X (m)

Ym X@mym X (m)
(a) (b) (©
Fig. 4. Movement of mine #5 (L = 1.01m, p = 2.1 x 102 kg m—2) with y = 0.0045 m and ), = 42.2° obtained from (a) NSWC-Carderock experiment,
(b) 3-D IMPACT35 model, and (c) 2-D IMPACT28 model.
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Fig. 5. Movement of mine #2(L = 0.505m, p = 2.1 x 103 kg m—3) with y = 0 and ¢, = 87.0° obtained from (a) NSWC-Carderock experiment, (b) 3-D
IMPACT35 model, and (c) 2-D IMPACT28 model (after [11]).

C. Moment of Momentum Equation neglected. Thus, we have
The moment of momentum equation is written in the M-co-
ordinate system, which rotates with the angular velocity of 2 =w.
Q = wrjn + wskyy. (8)  This leads to zero centripetal and “Coriolis” terms
Usually, the angular velocity around the mine’s main axis iy,
(i.e., self-spinning velocity) is very small (w; ~0) and Qx (A xw)=0, —2J e (X xw)=0. 9)
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Fig. 6. Model verification from prediction of the COM position z using the NSWC-Carderock experiment data at several time instances: 0.32, 0.64, 0.96, and
1.28 s. Here, the first column is the data-IMPACT28 comparison, the second column is the data-IMPACT35 comparison, the third column shows the histograms
of the model error (62) for IMPACT28, and the fourth column shows the histograms of the model error (6x) for IMPACT35.

The inertial term locity is small. The moment of momentum equation in the M-co-
ordinate system can be simplified by

dQ . dw2 dw3 dw
g XWw =1y <M3W _w2ﬂ> (10) J.E ~ M, + M, (11)

only has the component along the direction of i;; (mine’s main  where M,,;, and M, are the nonhydrodynamic and hydrody-
axis). This term may be neglected when the self-spinning ve- namic force torques. In the M-coordinate system, the moment
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Fig. 7. Model verification from prediction of the COM position z using the NSWC-Carderock experiment data at several time instances: 0.32, 0.64, 0.96, and
1.28 s. Here, the first column is the data-IMPACT28 comparison, the second column is the data-IMPACT35 comparison, the third column shows the histograms
of the model error (82) for IMPACT28, and the fourth column shows the histograms of the model error (62) for IMPACT35.

of gyration tensor for the axially symmetric cylinder is a diag-
onal matrix

J 0 0
J=|0 J, 0 (12)
0 0 Jy

where .J1, .J, and .J5 are the moments of inertia. The nonhydro-
dynamic force usually contains the gravity and buoyancy forces.

The gravity force, passing the COM, does not induce the mo-
ment. The buoyancy force induces the moment in the j, direc-
tion if the COM does not coincide with the COV (i.e., x # 0)

M, = |Fy|x cos th2ju- (13)
D. Sediment Dynamics

In the existing IMPACT35 model, the sediment resistance is
calculated using the delta method. This method is based on the
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Fig. 8. Model verification from prediction of the orientation «» using the NSWC-Carderock experiment data at several time instances: 0.32, 0.64, 0.96, and 1.28
s. Here, the first column is the data-IMPACT28 comparison, the second column is the data-IMPACT35 comparison, the third column shows the histograms of the
model error (6% ) for IMPACT28, and the fourth column shows the histograms of the model error (642 ) for IMPACT35.

assumption that the cylinder pushes the sediment and leaves
space in the wake as it impacts and penetrates into the sedi-
ment. This space is refilled by water and the water cavity is pro-
duced. At the instant of penetration, the total resistant force on
the cylinder is represented by [16]-{18]

F° = / 6(f +f) + 8+ £ 1do+F,, (14)

Osed

where (f7,f,,) and (£, f;") are the sediment buoyancy and
shear resistance forces and water buoyancy and hydrody-

namic forces (per unit area) at the point r over the cylinder’s
surface, os.q is the area of the cylinder's surface below the
water—sediment interface, F,,, is the pore water pressure force
on the whole cylinder, and é-function is defined by

6:{1 ven > ()

0 ven<o0 (15)

which shows that the sediment buoyancy and shear resistance
forces act when the cylinder moves towards them. Here, v is
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the velocity at point r (represented in the M-coordinate) on the
cylinder surface

v=V+wxr. (16)
I1l. VERIFICATION OF IMPACT35 IN THE WATER COLUMN

The NSWC—Carderock experiment was conducted on
September 10-14, 2001 in the Explosion Test Pond, which is

the only explosive-related test pond in the United States with
the capability of providing high-speed underwater photography
given its exceptional water clarity. In addition, the facility’s
concrete floor thickness and reinforcement is sufficient to allow
impact of 45-kg cylinders without additional floor protection.
The pond in plan view is a regular pentagon with each side of
41 m. During the experiment, six model mines (Table 1) with
mass varying from 16.96 to 45.85 kg were released to the pond
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Fig. 10. Optical mine used in the Baltic Sea experiment (after [24]).

TABLE II
PHYSICAL PARAMETERS OF THE FULL-SIZE OPTICAL MINE IN THE
BALTIC SEA EXPERIMENT (AFTER [24])

Length (m) 1.466
Diameter (m) 0.470
Taper Diameter (m) 0.395
Taper Length (m) 0.150
Volume (m?) 0.252
Mass (kg) 550.00
x (m) 0

I (kg m?) 14.82
1, J3 (kg m?) 105.00

TABLE 1l
PHYSICAL PARAMETERS OF THE ENVIRONMENT IN THE
BALTIC SEA EXPERIMENT (AFTER [24])

Air Density (kg m™) 1.22
Water Density (kg m™) 1025.8
Air Kinetic Viscosity (m*s™) 1.46x107
Water Kinetic Viscosity (m? s’ 1.13x10°

with the water depth at 7.92 m [19], [20]. The data set collected
from the NSWC-Carderock experiment was used to evaluate
the added value of IMPACT35 versus IMPACT28 (2-D model).

A. Near Horizontal Release

Model mine #6 was released to the water with ¢, = —14°
(near horizontal, see Fig. 2). The physical parameters of this
mine are given by

L=1.01m,
m =45.85 kg,

p=2.10x10° kg m~3,
J1=0.1692 kg m?,

x=—-0.077 m,
Jo=J3=4.570 kg m?.
(7)

The initial conditions are given by

To =yo = 2z = 0,
ripro =0, hog = —14°,

’U,():’U():’(UOZO7
P30 =0, wig = wao = w3o = 0.

(18)
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Substitution of the model parameters (17) and the initial
conditions (18) into IMPACT?28 and IMPACT35 leads to the
prediction of the mine’s translation and orientation that are
compared with the data collected during the experiment at each
time step (Fig. 3). The new 3-D model (IMPACT35) simulated
trajectory agrees well with the observed trajectory. Both show
the same pattern and the same travel time (1.92 s) for the
cylinder passing through the water column. However, the 3-D
model (IMPACT35) is better than the 2-D model (IMPACT28)
in predicting the mine’s movement in the water column.

B. Near 45° Release

Model mine #6 was released to the water with o = 42.2°,
The initial conditions are given by

To=yo=20=0,
h10=0, 1hg0=42.2°,

’lL[]:’l}O:’lUO:O,

1P30=0, wio=w2=w30=0.(19)

Substitution of the model parameters (17) and the initial
conditions (19) into IMPACT28 and IMPACT35 leads to the
prediction of the mine’s translation and orientation that are
compared with the data collected during the experiment at time
steps (Fig. 4). Both 3-D model (IMPACT35) and 2-D model
(IMPACT28) simulated trajectories and travel times agree well
with the observed trajectory.

C. Near Vertical Release

Model mine #2 was released to the water with 15 = 87°. The
physical parameters of this mine are given by

L=0505m, p=210x10°kgm 3,

m =22.27kg, J; =0.0806 kg m?,
Jy = J3 = 0.477 kg m*.

x =0,

(20)

The initial conditions are given by

Zo=Y0=20=0, uo=vo=we=0,

P10 =0, 1/1202870a P30=0, wio=wz=w3=0. (21)
The predicted cylinder’s translation and orientation are com-
pared with the data collected at time steps (Fig. 5). The 3-D
model (IMPACT35) simulated trajectory agrees well with the
observed trajectory. Both show the same straight pattern and
the same travel time (1.84 s) for the cylinder passing through
the water column.

D. Satigtical Error Analysis

Figs. 6-8 show scatter diagrams and histograms for pre-
dicting the mine’s location and orientation [x(¢), z(¢), ¥2(t)].
In the scatter diagrams, the points cluster around the diagonal
line of ¢, = ¢, using IMPACT35 (second column), and the
points are spreading out of the diagonal line using IMPACT28
(first column), which confirms that IMPACT35 predicts COM
position more accurately than IMPACT28. Histograms of
model errors for COM position have Gaussian-type distribution
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Fig. 11. Sediment density p,(z) and static shear strength S(z) profiles in the Baltic Sea from the cores collected at 59 mine-impact sites during the mine-drop
experiment in June 2003: (a) individual density profiles, (b) individual static shear strength profiles, (c) mean density profile, and (d) mean static shear strength

profile (after [24]).

with near-zero mean and small standard deviation (STD) using
IMPACT35 (fourth column), and non-Gaussian-type distribu-
tions with large STD using IMPACT28 (third column).

The total number of observational points at each time sample
N(t) is around 41 as ¢t <1.2 s and reduces quickly with time
ast >1.2 s Fig. 9(a), which indicates that the model verifica-
tion is reliable for ¢ <1.2 s. The added value of IMPACT35
is easily seen from Fig. 9. For example, the root-mean-square
error (rmse) of COM prediction is much smaller when using
IMPACT35 than IMPACT28 [Fig. 9(b) and (c)]. The STDs of
the model errors for the COM prediction are also much lower
when using IMPACT35 than IMPACT28 [Fig. 9(e) and (f)].
The rmse of orientation prediction is smaller when using IM-
PACT35 than IMPACT28 for ¢ <1 s. When ¢ >1 s, the rmse
of 1, is around half when using IMPACT35 than when using
IMPACT28 [Fig. 9(d) and (9)].

IV. VERIFICATION OF IMPACT35 IN SEDIMENT

The Baltic Sea experiment was conducted in June 2003 by
the German Federal Armed Forces Underwater Acoustic and
Marine Geophysics Research Institute (FWG, Kiel, Germany)
[21] with the full-size optical mine (Fig. 10) which is allowed to
free fall from the winch. Table Il shows the physical parameters
of the optical mine. Table 111 lists the physical environments in
the Baltic Sea. The full-size optical mine was released 59 times.
The water depths of the drop sites were between 25.0 and 26.5m
(Fig. 11). The volume of mine burial percentage was measured.
The readers are referred to [6] for detailed information.

After running IMPACT35 with the delta method for the sedi-
ment resistance (14) for each gravity core regime [p,(z), S(z)],
the predicted and observed burial volumes (in percent) were
compared (Fig. 12). The bias (mean predicted minus observed
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Fig. 12. Scatter diagrams of buried volume prediction against the Baltic
Sea experimental data. Here, IMPACT35 uses the delta method for sediment
resistance.

values) and rmse of burial volume are 11% and 26.8%. The
correlation coefficient between predicted and observed burial
volumes is 0.374%.

The histograms of the burial volume (in percent) are
very different between the Baltic Sea experiment and the
model prediction of IMPACT35 using the delta method
[Fig. 13(a) and (b)]. In the experiment, the probability density
function (pdf) has a peak at burial volume of 50% with a
frequency of 26. However, the model predicted pdf has a peak
at 30% with a frequency of 11.

V. BEARING FACTOR METHOD

A new (bearing factor) method is presented for calculating
the sediment resistant force and torque.

A. Sediment Resistance

When the mine impacts and penetrates into the sediment, it
creates a large transient pore pressure in the sediment that causes
ruptures in the sediment and influences the resistance force on
the cylinder [22], [23]. The resistance of the sediment to the
mine’s penetration is assumed to have the following three com-
ponents: buoyancy force F;, hydrodynamic (drag and lift) force
F; (similar to air and water), and shear resistance force F> (re-
sistance to the rupture)

F°=F; +F; +F. (22)
The sediment buoyancy force per unit area is defined by
Fi=-n [ ()l (23)

z

where p,(z) is the sediment wet density (usually obtained from
the sediment data), n is a unit vector normal to the mine surface
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Fig. 13. Histograms of buried volume (in percent) from (a) Baltic Sea
experiment and (b) prediction using IMPACT35 with the delta method.

(outward positive), and z,, represents the vertical coordinate of
the water—sediment interface.

The shear resistance force (F?) is in the opposite direction
of v and acts on the mine. Its magnitude is proportional to the
product of the sediment shear strength (.S) and the rupture area
(A, projection of sediment-contacting area perpendicular to the
velocity V) with a nonnegative bearing factor N [15]

F; = —7N(p,v)SA, N > 0. (24)
The sediment resistance torque includes the hydrodynamic and

shearing resistance torques
M’ =rx(F;+F;)=—[N(p,v)SAlrxT+rxF;. (25)

Here, p is the nondimensional penetration depth scaled by the
diameter of the cylinder (2R). The sediment density in (23) and
shear strength (S) in (24) and (25) are measured.

The bearing factor increases with p and decreases with the

decreasing speed
v
Veri

where A is the v-effect parameter, (i1, u2) are the p-effect pa-
rameters [15], and v.,; is the critical speed. The bearing factor
N is amplified [1 + Alog(v/vei) > 1] for v > v, indepen-
dent of v for v = v, and is reduced [1 + Alog(v/ver) < 1]
for v < wey. During the penetration, v decreases since the

N () = ][ 1+ Ao (26)
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\ M

Fig. 14. Calculation of immersed area (after [12]).

buoyancy, hydrodynamic, and shear resistance forces oppose tion.Validity of the bearing factor method to mine-impact burial
the penetration. Decrease of v reduces bearing factor N. The needs thorough evaluation.
two p-effect parameters are given by [15] Since N cannot be negative, when v decreases to a critical

41 =93 s =0.T. v = vere” Y (@7)

Note that the nondimensional (26) and the two p-effect param-  the bearing factor N(p,v) and in turn the shearing resistance
eters are derived from a small probe under axial impact condi- force become zero. The mine ceases the penetration in sediment.
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Note that A and v.,; are the two tuning parameters of the numer-
ical model. In this paper, we use

A=0.2 vy =00015ms L. (28)

B. Rupture Area

Usually, after passing through the water column, the
cylinder’s velocity reduces. The rupture area can be repre-
sented approximately by the contact surface area. Let (A, A;)
be the sediment-contacting areas on the circular bottom (fan
shape) and side (curved trapezoid). The rupture area A is
the summation of the projections of (Af, A;) on the plane
perpendicular to the mine’s velocity V

A=A1+Ay Ay =Apcosa Ay = Aisina (29)

where « is the angle between V and the mine’s axis. Let R be
the radius of the cylinder, h be the depth of Ay, and (hy, h2)
be the depths of the trapezoid A; immersed in the sediment
(Fig. 14). Let the length of the trapezoid be L,. A is computed

simply by

Af:gR2—(R—h)\/R2—(R—h)27 6=cos™! (RTT}? :
0)

(
Ay is computed by

(214 R, forhy>ha>R
Ly
—— [R%*(6, -6
(hl—hQ)[ (61 =62)
A= —(R—h1)bi+(R—h2)bs], forha<h; <R
Ly
2L R+
t1 (R=ha)
. X [R2 (%—92)+(R—h2)b2] s for hy>R>hso

(31)
where (L1, Lio) are the lengths of subcylinders with (A >
R,h < R) and b; and b, are computed by

b1 = R2 - (R - hl)?./

b2 =V R? — (R - }LQ)Q. (32)

VI. MODEL IMPROVEMENT USING THE BEARING
FACTOR METHOD

Model improvement is evaluated using the Baltic Sea exper-
iment data. Similar to the process described in Section V, the
modeled (with the bearing factor method) and observed burial
volumes (in percent) were compared (Fig. 15). As evident, the
sediment resistance using the bearing factor method improves
the prediction capability of IMPACT35. The bias (mean pre-
dicted minus observed values) and rmse of the burial volume
reduce to 0.1% and 15.8%. The correlation coefficient between
observed and predicted burial volumes increases to 0.435 (using
the bearing factor method) from 0.374 (using the delta method).

The histogram of the predicted burial volume (in percent)
using the bearing factor method (Fig. 16) is closer to that of
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Fig. 16. Histogram of buried volume (in percent) prediction using IMPACT35
with the delta method.

the Baltic Sea experiment [Fig. 13(a)] than the histogram of
the predicted burial volume (in percent) using the delta method
Fig. 13(b). In the experiment, the histogram has a peak at burial
volume of 50% with a frequency of 26. In the prediction, the
histogram has a peak at 30% with a frequency of 11 using the
delta method Fig. 13(b). However, the histogram has a peak at
50% with a frequency of 17 (Fig. 16).

The histogram of the model error is more symmetric around
the zero error using the bearing factor method than using the
delta method. For example, the histogram has a peak at zero
error with frequency of 16 using the bearing factor method
[Fig. 17(b)], and a peak at —10% error with the frequency
of 12 using the delta method [Fig. 17(a)]. The burial volume
prediction is unbiased using the bearing factor method, and
negatively biased using the delta method.
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(a) the delta method, and (b) the bearing factor method.

VIl. SUMMARY

The following points summarize this paper.

1) The 3-D mine-impact burial prediction model
(IMPACT35) was recently developed to predict the
translation and orientation of falling cylindrical mine
through air, water, and sediment. It contains the following
three components: triple coordinate transform, cylinder
decomposition, and hydrodynamics of falling rigid object
in a single medium (air, water, or sediment) and in
multiple media (air—water and water—sediment interfaces).

2) Data collected from two mine-impact burial experiments
were used to verify the existing IMPACT35. The pre-
dicted mine track and orientation in the water column
agree quite well with the NSWC-Caderock data. The rmse
of the mine’s position and orientation is much smaller
using IMPACT35 than using IMPACT28. However, the
predicted mine burial volume in the sediment was not as
good as the mine trajectory in the water column.

3) Calculation of the sediment resistant force and torque is
updated from the delta method (old) to the bearing factor
method (new). With the bearing factor method, the predic-
tion capability of IMPACT35 has been greatly improved.
The prediction error satisfies near-Gaussian distribution.
The bias of the burial volume (in percent) prediction re-
duces from 11% using the delta method (old) to 0.1% using

the bearing factor method. Correspondingly, the rmse re-
duces from 26.8% to 15.8%.

4) IMPACT35 developed in this paper is for cylindrical mines
only. It is necessary to extend the modeling effort to more
realistic mine shapes such as Rockan and Manta for oper-
ational use.
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